Solutions to Workbook Exercises

Unit 16:

Categorical Propositions

Exercise "Categorical Propositions -1"

(a) All politicians are nasty.
(b) Some Democrats are not happy after the elections.
(c) Some Republicans are happy after the elections.
(d) No California Democrats are happy.
(e) Some voters are not happy.
(f) Some voters are happy.
(g) All Americans have voted in the elections.
(h) No Americans are pretentious.

Proposition:	A
Proposition:	O
Proposition:	I
Proposition:	E
Proposition:	O
Proposition:	I
Proposition:	A
Proposition:	E

Exercise "Categorical Propositions -2"

Symbolize the following opinions about politicians using the symbolization key provided. For each of the propositions, write down the canonical reading:
U.D.: politicians $\quad A x: x$ is ambitious $\quad I x: x$ is intelligent $C x: x$ is corrupt $\quad N x: x$ is new to politics $D x: x$ is diligent $\quad P x: x$ is pretentious $H x: x$ is honest $\quad T x: x$ is tired
(a) Some intelligent politicians are corrupt.

$$
\exists x(I x \bullet C x)
$$

There is an x such that x is intelligent and x is corrupt.
(b) There is an intelligent politician who is honest. $\exists x(I x \bullet H x)$

There is an x such that x is intelligent and x is honest.
(c) Some corrupt politicians are intelligent. $\exists x(C x \bullet I x)$

There is an x such that x is corrupt and x is intelligent.
(d) Some corrupt politicians are not intelligent.

$$
\exists x(C x \bullet \sim I x)
$$

There is an x such that x is corrupt and x is not intelligent.
(e) Some ambitious politicians are not honest.

$$
\exists x(A x \bullet \sim H x)
$$

There is an x such that x is ambitious and x is not honest.
(f) All corrupt politicians are ambitious.

$$
\forall x(C x \rightarrow A x)
$$

For every x, if x is corrupt then x is ambitious.
(g) Any politician who is new to politics is honest.

$$
\forall x(N x \rightarrow H x)
$$

For every x, if x is new to politics then x is honest.
(h) No corrupt politicians are honest.

$$
\forall x(C x \rightarrow \sim H x)
$$

For every x, if x is corrupt then x is not honest.
(i) No honest politician is corrupt.

$$
\forall x(H x \rightarrow \sim C x)
$$

For every x, if x is honest then x is not corrupt.
(j) All honest politicians are tired.

$$
\forall x(H x \rightarrow T x)
$$

For every x, if x is honest then x is tired.
(k) No politician who is new to politics is tired. $\forall x(N x \rightarrow \sim T x)$

For every x, if x is new to politics then x is not tired.
(l) No honest politician is pretentious. $\forall x(H x \rightarrow \sim P x)$

For every x, if x is honest then x is not pretentious.

Exercise "Categorical Propositions - 3"

Symbolize the following propositions. For each of the propositions, write down the canonical interpretation.
U.D.: animals

$B x: x$ barks	$H x: x$ howls
$C x: x$ is a cat	$L x: x$ likes to walk
$D x: x$ is a dog	$M x: x$ meows
$F x: x$ likes canned food	$W x: x$ wags its tail

(a) Some dogs howl. $\exists x(D x \bullet H x)$

There is an x such that x is a dog and x howls.
(b) No cats howl.

$$
\forall x(C x \rightarrow \sim H x)
$$

For every x, if x is a cat then x does not howl.
(c) Some animals howl.

$$
\exists x H x
$$

There is an x such that x howls.
(d) Some cats do not like canned food.

$$
\exists x(C x \bullet \sim F x)
$$

There is an x such that x is a cat and x does not like canned food.
(e) All cats meow.

$$
\forall x(C x \rightarrow M x)
$$

For every x, if x is a cat then x meows.
(f) No cat likes to walk.

$$
\forall x(C x \rightarrow \sim L x)
$$

For every x, if x is a cat then x does not like to walk.
(g) All dogs wag their tails.

$$
\forall x(D x \rightarrow W x)
$$

For every x, if x is a dog then x wags its tail.
(h) All animals like to walk.
$\forall x L x$
For every x, x likes to walk.

Exercise "Free and Bound Variables"

Show which variables are free and determine whether the formula is a proposition or a propositional function.
(a) $\forall x P x$
(b) $\forall x(P x \bullet Q x)$
(c) $\forall x(P x \bullet Q x) \rightarrow R x$
(d) $\forall x P x \bullet Q x$
(e) $\exists x P x \equiv Q x$
(f) $\quad \exists x \sim P x \bullet Q x$
(g) $\exists x(\sim P x \bullet Q x)$
(h) $\forall x(P x \bullet Q x) \rightarrow \sim(P x \bullet R x)$
(i) $\quad \exists x \sim(P x \bullet Q x)$
(j) $\quad \exists x(\sim(P x \rightarrow Q x) \bullet \sim(P x \bullet R x))$
(k) $\exists x(\sim(P x \rightarrow Q x) \bullet \sim(P x \bullet R x)) \vee \sim(R x \rightarrow C x)$
$\nabla_{\text {proposition }}$
$\square_{\text {propositional function }}$
$\nabla_{\text {proposition }}$
$\square_{\text {propositional function }}$
\square proposition
$\square_{\text {propositional function }}$
$\square_{\text {proposition }}$
$\square_{\text {propositional function }}$
$\square_{\text {proposition }}$
$\square_{\text {propositional function }}$
\square proposition
$\square_{\text {propositional function }}$
$\nabla_{\text {proposition }}$
$\square_{\text {propositional function }}$
\square proposition
\checkmark propositional function
$\square_{\text {proposition }}$
\square propositional function
$\nabla_{\text {proposition }}$
$\square_{\text {propositional function }}$
\square proposition
\checkmark propositional function

Exercise "'Only’ Propositions - 1"

Symbolize the following propositions using the symbolization key provided. For each of the propositions, write down the canonical interpretation.

U.D.: animals	$B x: x$ barks	$H x: x$ howls
	$C x: x$ is a cat	$L x: x$ likes to walk
	$D x: x$ is a dog	$M x: x$ meows
	$F x: x$ likes canned food	$W x: x$ wags its tail

(a) Only dogs bark.

$$
\forall x(B x \rightarrow D x)
$$

For every x, if x barks then x is a dog.
(b) Only cats meow.

$$
\forall x(M x \rightarrow C x)
$$

For every x, if x meows then x is a cat.
(c) Only dogs howl.

$$
\forall x(H x \rightarrow D x)
$$

For every x, if x howls then x is a dog.
(d) Only dogs wag their tails

$$
\forall x(W x \rightarrow D x)
$$

For every x, if x wags its tail then x is a dog.
(e) Only dogs like to walk.

$$
\forall x(L x \rightarrow D x)
$$

For every x, if x likes to walk then x is a dog.
(f) Only cats like canned food.

$$
\forall x(F x \rightarrow C x)
$$

For every x, if x likes canned food then x is a cat.
(g) Only animals that bark like to walk.

$$
\forall x(L x \rightarrow B x)
$$

For every x, if x likes to walk then x barks.
(h) Only animals that like to walk wag their tails. $\forall x(W x \rightarrow L x)$

For every x, if x wags its tail then x likes to walk.
(i) Only cats do not like to walk. $\forall x(\sim L x \rightarrow C x)$

For every x, if x does not like to walk then x is a cat.
(j) Only animals that meow like canned food.

$$
\forall x(F x \rightarrow M x)
$$

For every x, if x likes canned food then x meows.

Exercise "'Only’ Propositions - 2"

U.D.: people

Fx: x is a father	Ox: x is a mother	Tx: x wears ties.
$M x: x$ is a man	Sx: x wears skirts	Wx: x is a woman

(a) All men are fathers.

$\forall x(M x \rightarrow F x)$	$\begin{aligned} & \square_{\text {true }} \\ & \nabla_{\text {false }} \end{aligned}$
$\forall x(F x \rightarrow M x)$	$\nabla_{\text {true }}$ \square false
$\forall x(W x \rightarrow O x)$	$\begin{aligned} & \square_{\text {true }} \\ & \nabla_{\text {false }} \end{aligned}$
$\forall x(O x \rightarrow W x)$	$\nabla_{\text {true }}$ \square fals
$\forall x(O x \rightarrow W x)$	$\nabla_{\text {true }}$ \square false
$\forall x(W x \rightarrow O x)$	\square true $\nabla_{\text {false }}$
$\forall x(T x \rightarrow M x)$	\square true $\nabla_{\text {false }}$
$\forall x(S x \rightarrow W x)$	$\nabla_{\text {true }}$ \square false
$\forall x(\sim T x \rightarrow W x)$	$\begin{aligned} & \square_{\text {true }} \\ & \nabla_{\text {false }} \end{aligned}$
$\forall x(\sim S x \rightarrow M x)$	\square true $\nabla_{\text {false }}$
$\forall x(W x \rightarrow S x)$	\square true $\nabla_{\text {false }}$
$\forall x(M x \rightarrow T x)$	\square true $\nabla_{\text {false }}$
$\forall x(\sim T x \rightarrow S x)$	$\begin{aligned} & \square_{\text {true }} \\ & \nabla_{\text {false }} \end{aligned}$
$\forall x(F x \rightarrow \sim M x)$	$\nabla_{\text {true }}$ \square false
$\forall x(F x \rightarrow \sim S x)$	$\nabla_{\text {true }}$ \square false

