Unit 16:

Categorical Propositions

Exercise "Categorical Propositions - 1"

(a)	All politicians are nasty.	Proposition:	А
(b)	Some Democrats are not happy after the elections.	Proposition:	0
(c)	Some Republicans are happy after the elections.	Proposition:	Ι
(d)	No California Democrats are happy.	Proposition:	E
(e)	Some voters are not happy.	Proposition:	0
(f)	Some voters are happy.	Proposition:	Ι
(g)	All Americans have voted in the elections.	Proposition:	А
(h)	No Americans are pretentious.	Proposition:	E

Exercise "Categorical Propositions - 2"

Symbolize the following opinions about politicians using the symbolization key provided. For each of the propositions, write down the canonical reading:

	U.D.: politicians	Ax: x is ambitious Cx: x is corrupt Dx: x is diligent Hx: x is honest	Ix: x is intelligent Nx: x is new to politics Px: x is pretentious Tx: x is tired	
(a)	Some intelligent politicians are c	corrupt.	$\exists x \ (Ix \bullet Cx)$	
	There is an x such that x is intellined	igent and x is corrupt.		
(b)	There is an intelligent politician	who is honest.	$\exists x \ (Ix \bullet Hx)$	
	There is an x such that x is intelligent and x is honest.			
(c)	Some corrupt politicians are inte	lligent.	$\exists x (Cx \bullet Ix)$	
	There is an x such that x is corrupt and x is intelligent.			
(d)	Some corrupt politicians are not	intelligent.	$\exists x \left(Cx \bullet \sim Ix \right)$	
	There is an <i>x</i> such that <i>x</i> is corrupt and <i>x</i> is not intelligent.			
(e)	Some ambitious politicians are n	ot honest.	$\exists x \ (Ax \bullet \sim Hx)$	
	There is an x such that x is ambitious and x is not honest.			
(f)	All corrupt politicians are ambiti	ous.	$\forall x \ (Cx \to Ax)$	
	For every <i>x</i> , if <i>x</i> is corrupt then <i>x</i> is ambitious.			
(g)	Any politician who is new to pol	itics is honest.	$\forall x \ (Nx \to Hx)$	
	For every x , if x is new to politic	s then x is honest.		
(h)	No corrupt politicians are honest		$\forall x (Cx \to \sim Hx)$	
	For every x , if x is corrupt then x	is not honest.		
(i)	No honest politician is corrupt.		$\forall x \ (Hx \to \sim Cx)$	
	For every x , if x is honest then x	is not corrupt.		
(j)	All honest politicians are tired.		$\forall x \ (Hx \to Tx)$	
	For every x , if x is honest then x	is tired.		
(k)	No politician who is new to polit	tics is tired.	$\forall x \ (Nx \to \sim Tx)$	
	For every x , if x is new to politic	s then x is not tired.		
(1)	No honest politician is pretentiou	18.	$\forall x (Hx \to \sim Px)$	
	For every x , if x is honest then x	is not pretentious.		

Exercise "Categorical Propositions - 3"

Symbolize the following propositions. For each of the propositions, write down the canonical interpretation.

	UD : animals Bx :	<i>Bx</i> : <i>x</i> barks		<i>Hx</i> : <i>x</i> howls
	U.D.: animais	Cx: x is a cat		<i>Lx</i> : <i>x</i> likes to walk
		Dx: x is a dog		<i>Mx</i> : <i>x</i> meows
		<i>Fx</i> : <i>x</i> likes canned	l food	Wx: x wags its tail
(a)	Some dogs howl.		Ξ	$x (Dx \bullet Hx)$
	There is an x such that x is a dog an	d <i>x</i> howls.		
(b)	No cats howl.		$\forall x$	$(Cx \rightarrow \sim Hx)$
	For every x , if x is a cat then x does not howl.			
(c)	Some animals howl.			$\exists x Hx$
	There is an x such that x howls.			
(d)	Some cats do not like canned food.		ξE	$x (Cx \bullet \sim Fx)$
	There is an x such that x is a cat and x does not like canned food.			
(e)	All cats meow.		$\forall x$	$x (Cx \to Mx)$
	For every x , if x is a cat then x meows.			
(f)	No cat likes to walk.		$\forall x$	$c(Cx \rightarrow \sim Lx)$
	For every <i>x</i> , if <i>x</i> is a cat then <i>x</i> does not like to walk.			
(g)	All dogs wag their tails.		∀x	$x (Dx \to Wx)$
	For every x , if x is a dog then x wag	s its tail.		
(h)	All animals like to walk.			$\forall x \ Lx$
	For every <i>x</i> , <i>x</i> likes to walk.			

Exercise "Free and Bound Variables"

Show which variables are free and determine whether the formula is a proposition or a propositional function.

(a)	$\forall x \ Px$	✓ proposition ↓ propositional function
(b)	$\forall x (Px \bullet Qx)$	✓ proposition ↓ propositional function
(c)	$\forall x \ (Px \bullet Qx) \to Rx$	□proposition ☑propositional function
(d)	$\forall x \ Px \bullet Qx$	□proposition ☑propositional function
(e)	$\exists x \ Px \equiv Qx$	□proposition ☑propositional function
(f)	$\exists x \sim Px \bullet Qx$	□proposition ☑propositional function
(g)	$\exists x \ (\sim Px \bullet Qx)$	✓ proposition ↓ propositional function
(h)	$\forall x \ (Px \bullet Qx) \to \sim (Px \bullet Rx)$	□proposition ☑propositional function
(i)	$\exists x \sim (Px \bullet Qx)$	✓ proposition ↓ propositional function
(j)	$\exists x \ (\sim (Px \to Qx) \bullet \sim (Px \bullet Rx))$	✓ proposition ↓ propositional function
(k)	$\exists x \ (\sim (Px \to Qx) \bullet \sim (Px \bullet Rx)) \lor \sim (Rx \to Cx)$	□proposition ☑propositional function

Exercise "'Only' Propositions – 1"

Symbolize the following propositions using the symbolization key provided. For each of the propositions, write down the canonical interpretation.

	U.D.: animals	Bx: x barks Cx: x is a cat Dx: x is a dog Fx: x likes canned food	Hx: x howls Lx: x likes to walk Mx: x meows Wx: x wags its tail		
(a)	Only dogs bark.		$\forall x \ (Bx \to Dx)$		
	For every <i>x</i> , if <i>x</i> barks then <i>x</i> is a dog.				
(b)	Only cats meow.		$\forall x \ (Mx \to Cx)$		
	For every <i>x</i> , if <i>x</i> meows then <i>x</i> is a cat.				
(c)	Only dogs howl.		$\forall x \ (Hx \to Dx)$		
	For every <i>x</i> , if <i>x</i> howls then <i>x</i> is a dog.				
(d)	Only dogs wag their tails		$\forall x \ (Wx \to Dx)$		
	For every x , if x wags its tail then x is a dog.				
(e)	Only dogs like to walk.		$\forall x \ (Lx \to Dx)$		
	For every <i>x</i> , if <i>x</i> likes to walk then <i>x</i> is a dog.				
(f)	Only cats like canned food.		$\forall x (Fx \to Cx)$		
	For every x , if x likes canned food then x is a cat.				
(g)	Only animals that bark like to walk		$\forall x \ (Lx \to Bx)$		
	For every <i>x</i> , if <i>x</i> likes to walk then <i>x</i> barks.				
(h)	Only animals that like to walk wag	their tails.	$\forall x \ (Wx \to Lx)$		
	For every x, if x wags its tail then x likes to walk.				
(i)	Only cats do not like to walk.		$\forall x \ (\sim Lx \to Cx)$		
	For every <i>x</i> , if <i>x</i> does not like to walk then <i>x</i> is a cat.				
(j)	Only animals that meow like canne	d food.	$\forall x (Fx \to Mx)$		
	For every x , if x likes canned food t	hen x meows.			

Exercise "'Only' Propositions – 2"

UD · people	Fx: x is a father	Ox: <i>x</i> is a mother	Tx: x wears ties.
O.D.: people	Mx: x is a man	Sx: <i>x</i> wears skirts	Wx: <i>x</i> is a woman

(a)	All men are fathers.	$\forall x (Mx \to Fx)$	□ _{true} Infalse
(b)	Only men are fathers.	$\forall x (Fx \to Mx)$	⊠true □false
(c)	All women are mothers.	$\forall x (Wx \to Ox)$	□true ☑false
(d)	Only women are mothers	$\forall x \left(Ox \to Wx \right)$	⊠true ∎false
(e)	All mothers are women.	$\forall x \left(Ox \to Wx \right)$	interent de la construcción de
(f)	Only mothers are women.	$\forall x (Wx \to Ox)$	□true ☑false
(g)	Only men wear ties.	$\forall x \ (Tx \to Mx)$	□true ☑false
(h)	Only women wear skirts.	$\forall x \ (Sx \to Wx)$	⊡ false
(i)	Only women do not wear ties.	$\forall x \ (\sim Tx \to Wx)$	□true ☑false
(j)	Only men do not wear skirts.	$\forall x \ (\sim Sx \to Mx)$	□true ☑false
(k)	Only persons wearing skirts are women	$\forall x \ (Wx \to Sx)$	□true ☑false
(1)	Only persons wearing ties are men.	$\forall x \ (Mx \to Tx)$	□true ☑false
(m)	Only persons wearing skirts do not wear ties.	$\forall x \ (\sim Tx \to Sx)$	□true ☑false
(n)	Only persons who are not mothers are fathers.	$\forall x \ (Fx \to \sim Mx)$	Øtrue □false
(0)	Only persons who do not wear skirts are fathers.	$\forall x (Fx \to \sim Sx)$	Interest de la construcción de